Conditional probability

Modeling knowledge of uncertainty

Michael Psenka

What we aim to model

Conditional probability

Definition. The conditional probability $\mathbb{P}(A \mid B)$ (read "probability of A given B") is defined as the following:

$$\mathbb{P}(A \mid B) \coloneqq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Bayes' Theorem

Theorem. For a distribution \mathbb{P} , the following equation holds:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Why Bayes'?

Total probability rule

Theorem. Let (Ω, \mathbb{P}) be a random variable. If we have a collection of sets $\{A_i\}_{i=1}^n$ that "partition" the sample space Ω , i.e.: 1. $A_i \cap A_j = \emptyset$ for all $i, j \in \{1, ..., n\}$, 2. $\cup_{i=1}^n A_i = \Omega$,

Then the following equation holds for any event $B \subset \Omega$:

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \mid A_i) \mathbb{P}(A_i).$$

Total probability rule

Joint distributions

Applying Bayes'